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The derivation is shown of generalized quantities called integroforms,
with the aid of which: a) variable coefficients are eliminated from
differential equations and boundary conditions; b) one may derive the
integral invariants of reciprocal similarity (or identity) transforma-
tions "as a whole” for meta-constant phenomena of a given class.

Methods of quantitative description of phenomena
associated with constancy of physical coefficients w =
= const ("constant phenomena" [6]), are comparatively
well developed. Here we may relate both the methods
of classical mathematics, for example the theory of
differential equations in partial derivatives, and also
methods of the theory of classical similarity and sim-
ulation [11]. The above methods are usually not appli-
cable [1-10] to description of phenomena associated
with variation of coefficients w = const ("meta-con-
stant phenomera" [6, 10]). No general theory exists
for solution of the above equations with w = const.

On the basis of the ideas underlying differential and
integral calculus and differential geometry, it has
proved possible fo devise a method of finding a system
U, of integral forms (the method of Z integroforms).
Representation of the objects of system U, by a "sec-
ondary information" system, replacing the "primary
information" system U, (see, for example, [10]),
leads to an appreciable generalization of the descrip-
tion of meta-constant objects [1-10]. The integroforms
Z are synthesized through "analysis of small dimen-
sions" [6—10], followed by transition to analysis of
dimensions which are "integral as a whole" [1-10].

In quantitative description of meta-constant objects
the integroforms can serve to achieve two purposes:
1) derivation of the invariants B = invar (dimension-
less integroforms) of generalized modeling; 2) elimin-
ation of the variable coefficients w # const from the
differential equations and the boundary conditions [1—
10].

We give some examples below to illustrate the ap-
plication of the method of integroforms to a generalized
description of meta-constant phenomena of heat con-
duction and of heat and mass transfer.

Meta-constant phenomena of heat conduction in a
solid are described by the well-known Fourier equa-
tion

Cy oT

= div(Agrad 7), (1)

in which we assume that
[Cr] = |Q/BT), A} = [QUT], Cy =pl, a =M\Cy,
Co=FT, 4, z 1) =[(x, y, 2 t)+ const,
A= {T(x, 5. z;8)} = @, (x, y, z; )=~ const, (2)

where Q is the amount of heat; Cy is the volume spec-
ific heat.

Analysis of "local similarity® [5~10] leads to der-
ivation of the invariant byg for small scale similar-
ity:

{d(\dT)}{d?) {d(AdT)}(ad)

bry = - ,
“TCaxywn | (agrean @
or
_ X)) @x)
bro = . @Xr) = invar, 4)

where on the small scale we make the sybstitution
dXr=AdT, dX,=adt. (5)

Hence, going on to examination "over-all" [1~-10],
the phenomena of meta-constant heat conduction may
be described by a system of quantities of only the fol-
lowing three types:

p=3
Ux=Xr UX, U] %, (6)
p=l
where the secondary information variables are re-
tained, these being the integroforms

Xr = 5 AdT,, %))

(7

X, = ( adt,. (8)
{
Turning now to description of phenomena by differ-
ential equations, we see that, using (6), we may re-
place (1) by the equation

IXT/0X, =AXr(x, y, 2, X)), 9)

which is amenable to solution by known methods.

An important point is that the theory of integro-
forms gives a general method of finding the integro-
forms, such as, for example, Xp, Xi, ete. [4-10}.

The inverse transition from the system Uy to the
primary information system, for example

p-=3
U,,=TUCVU7»U1UU X, (10)

p=!

consists of transformations following immediately
from the dX expressions. For example, according to
(5), we have

Xy(2, te)
t—ty= [ adX,, T—T,=
‘\';('to)

Xr (T, Ty)
A tdXr. (11)
XT (Te)
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The result of (3) and (4), which is the original in
the transformation of (1) to (9), is also a basic and
generalized modeling of heat conduction phenomena.

In the special case when w = const, we have, from
(1), the well-known invariant of classical similarity

Fo = af/~? = invar. (12)

With w = const in case (2), we find, from (4) or (9)
the integral invariant [4, 6]

B, = X7 = invar. (13)

The solution of the heat conduction problem in the ex~
ample given will have the form

X7 = Xr(Bro U Br), (14)

where the By must be found from the boundary condi~
tions.
if

3
mgm(TUtUUx,), (15)
~ 7,

we obtain the By, for example in the form [6]
Bro={ ({1 aTr‘dn]—‘f'zdtl}—Q dt=invar. (16)
intin in
When w = w(x,y, z;t) we obtain

Bro=1{ [{ |a|—'.2d11]_2 dt = invar. (a7
n\in
Continuing the transformation given in [15], in the

case
a=al(x, y, 2 H=a.(x, y, 2ya,) (18)

we obtain

a, ( l)m{ )

'p)

a7 2 (x,) dx,,,}"Z = invar. (19)

(1)

As an example of solution of (9) we shall examine
the one-dimensional problem of propagation of heat in
a plane-parallel slab:

aT a oT \. _ N
Cl"_()t—‘*— ox (\A(T)—_()_x_)' T, x) =T, (x);
oT
am L) S, ] <0 o)
0xX |r—o 0X |y-on

According to (6)—(8), we reduce the given system to
the generalized form:

0Xr 02Xy
= v Xr(0, x) = Xr, (x);
oX, Fw r (0, %) 1, (%)
X 0X
— =L =9X), — =L =0 (21)
ox X==() dx x=h

Introducing the argument X = B3/? = xX~'/2, we have
the ordinary differential equation

&Xr | X dXr

axi T2 Tdx

=0, (22)
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whose solution, expanding (14), is

X
Xr = 2u, | exp[— (X,2/1 dX,2, uy= ——~‘”‘T\ ~ const, (23)
;Y., dX O

where u, is determined by the boundary conditions.

In a one-dimensional diffusion process, described
by the analogous system

a
o€ _ 9 ! (C)EC—}, CO, ¥ =),

ot dx

oC

e 0OC
™ =f(),

—D(C
© . F”

=0, (24)

x=Hh

replacement by the generalized system

2
0Xc =6_)_(_£' Xc (0, x) =
X,  ax
0Xc 0Xc
- =p(X), —
0% lemo P (X) ax

X, (x),

=0, (25)

x=h

xc_f DdC,, X;= j Ddt,,
©) (£)

yields the solution similarly (D is the diffusion co-
efficient).

To describe a heat and mass transfer process in a
capillary-porous substance we have the well-known
Lykov system of equations, which, with some changes,
may be written in the form [17)

90D _ iy rgradn)+E. 2P (26)
at ot
peu©)

o =div (A grad T 4 A, grad 6). 27

We shall take the initial conditions, as in [17], for ex-
ample, to be

T{x, y, z. 0) =T, = const,
8(x, y, z; 0) = B, = const, (28)

and the boundary conditions at the point Xg on the
boundary FL of region L, in which the phenomenon
occurs, as in [17], for example, to be

aT(XF’ t)
on
— (1 —Er)trag,p (00, 0

Ar FAe (T —T ke, B} —

_emp} =0, (29)

308 (15 1) T (s 1)
3
Mgy PM G+
+ 4, (B¢, )~ 8y} =0. (30)

In the one-dimensional case, for example that of a
plane-parallel slab, the gradients of the functions in
(26) and (27) are replaced by partial derivatives with
respect to x; in (29) and (30) the derivatives with re-
spect to the normal are replaced by derivatives with
respect to x, while the points X y are replaced di-
rectly by the coordinate x = 0 on one plane, and by x =
= [, = const on the other.
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Analysis of the similarity of such phenomena, both
with w = const, and with w = const, leads to four in-
variants for the internal points xy, € L and to eight in-
variants at the points X on the boundary planes. In
all here there are 4 + 8, i.e., 12 invariants (criter-
ia) of similarity. As may be seen, the system (26)—
(30) is complicated, not only for finding an analytical
solution, but also for analysis of similarity and of
modeling. We shall therefore replace this system by
the symmetrical generalized system

0X17/0t = —div g,y (x, y, z ), (31)

aXlS/at = —div qQT (x’ Y, 2, t); (32)
in which the operator div applies to the vector fluxes

—Qre =grad X,,q, —qg, = grad Xg,, (33)

where Qg is the heat flux, [qpg] = [X/m? sec], qgT
is the mass flux, and [qgT] = kg/m,- sec.
Therefore,

0X16/0t = A Xer (x, y, 2; 1), (34)
0X11/0t = A Xura (%, y, 2; 1), (35)

where the generalized variables, integroforms of X,
are

Xure = Xor + Xar + X3zo, Xer = Xrs + Xoe,

Xir= [d(CT), Xie= [d(Cip8), Xor= [AdT,
1)) (M) (T)
Xsr= [ (ED3dTy, Xso= [ MELdS,,

(4] )
Xro = j A ATy Xoo = f 2;d8,. (36)

() (8)

Knowing (33), we may also formulate the general-
ized symmetrical boundary conditions, of the second
kind, for example

—4re(tr» 1) = 0Xuz0 /0N, —qor (1, 1) = 0Xer /On (37)

or of the third kind

_ e Xuren— Xitap),
on

(38)
aXeTF

= udF (XeTF - XeTm)-

In one-dimensional problems, (34) and (35) are
transformed to the form

aX\r _ *Xure 0*Xer
ot axt ot dx?

while in the boundary conditions (37) and (38), the de-
rivatives with respect to the normal are replaced by
derivatives with respect to X, and the points Xp are
replaced by coordinate x.

Analysis of the similarity of the meta-constant
phenomena under examination, which are described
by the system (34)—(37) or (34)—(36) and (38), leads
to the invariants B = invar of generalized modeling,

X
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the number of which is now diminished by a factor of
two relative to the primary information system (28)—
(30). Thus, in lieu of the four invariants for the inter-
nal points X1, € L we now have only two invariants,
B¢ and Bgj, which in the most general case have the
form

BFO: { dxpl S X
(UREE (x5,
—1 sl —1 . (40)
x{ anane} dx,, } dt = invar,
(X4r0)
BFi = .f}’ j‘ dxm s‘ x
(1) Y xp) (:F),l)
x{ § Xiddxer }—l dxp, } dt = invar. (41)
l ()‘(91-)

Noting that X, = H — Hy, Xjg9 =M — M, Hy = const,
M, = const, and assuming that E, { depend weakly on
M = pcg®, we obtain, after transformations

Bro={ { § | [ war|™"” an,, |7 dv=invar, (42)

i Gy (N

Br={{ || am-

iy (o)

|_l/2 dxp, }—2 d < =invar, (43)

—M)d8,
where ¥ = (A + 2A4E¢) (H — Hg)~!. In the special
case, when w does not depend on x,y,z,t, we obtain,
for example

Bro= - | waT, = invar, (44)
&
Bp; = _lt_2_ ‘. g (M— My)—d8, = invar. (45)
(8)

If w depends only on x,y, 2z,t, we obtain, for example,

{ —1/2 —2
Bro = ({ j a-{-ad._cd_EC&\ dx,,_’ dt = invar, (46)
il Gy c
—2
Bri = S'{ y |ad|—l/2dxp.} dt = invar. A"
i | i) | ‘

From (37) and (38), taking into account that o de-
pends only on X, we find the boundary integral invari-
ants

Brur = U | qrgdXsre}™ = invar, (48)
Brno = 1{{qg5} dXg; |~ = invar, (49)

or, for example,
Beiur = U{ {ap'{ Xiro,, — Xirep )~ dX4re J~* = invar, (50)

BFH]H = {\ G,‘I_;I {XHTF— Xerm }—l anT}“‘ = invar, (51)

i.e., only two invariants for the given type of bound-
ary conditions.
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If the quantities Xypg, X T, X1T: Xig.t,! satisfy a
group of similar transformations on the whole, then we
find the invariants of this group in the simplest form
to be

B t Xure .
Fo = —~ == }var,

= Xir (52)
Bg; = L ﬁT— = invar

2 Xe

and similarly, for example,
Brrir =g, X 3 = invar,
Brue = lger Xor = invar. (53)

Thus, for meta-constant phenomena of heat and
mass transfer, the system of generalized differential
equations and boundary conditions that has been found
allows us to describe the phenomena being modeled at
the internal points X; € L by only two integral invar-
ants BFo, By, and at the boundary of the surface FL,
by the other two integral invariants By, Bpg, O by
the four invariants Bppy, Bpg, Bpr2 Bpg: when
there are two boundary surfaces (for example, with
two parallel planes). Therefore, the total number of
integral invariants here is 2 +2 =4, or 2 + 4 =6, in-
steadof 4 + 4 =8, or 4 + 8 =12 invariants, required
for the primary system (26)—(30). The assembly of
invariants derived may serve as a basis for the cor-
responding empirical investigations in specifie prob-
lems of metaconstant phenomena of heat and mass
transfer.
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